

MAINE

Impact of Critical Zone Structures on Northern Peatland Hydrology

MAWS Annual Meeting 3/21/24

Acknowledgements

Advisor:

Dr. Andy Reeve

Field assistance:

Angelina Bucco; Orion-Bay Tucker; Shawn Snyder

Rutgers Research Group:

Dr. Lee Slater, Henry Moore & Nicolette Filippone

FAU Research Group:

Dr. Xavier Comas, Shelley Peirce

Maine Association of Wetland Scientists

MAFES

Access:

Wagner Forestry Mgmt.

Josh Woods, Danny Woods, Travis Howard

Research Question:

What is the role of buried
permeable deposits within
Maine's Peatlands on
groundwater interactions and
carbon cycling?

 Maine contains 6,000-8,000 peat deposits within an estimated 250,000 acres of wetlands (Bai et al. 2016)

- According to the 2016 State of Maine Carbon Budget, wetlands act as a net carbon sink containing ~257 Mg C/acre
 - In comparison:
 - Agriculture soil ~77 MgC/acre
 - Forests ~122 MgC/acre
 - Salt Marshes ~140 MgC/acre

Buried eskers have been found to act as primary controls in Caribou Bog hydrology which influence pool formation, geochemical hotspots, and vegetation gradients (Chen et al. 2020)

Study Area

Field Methods

- Installed 28 new well clusters 0
- Manual water levels 0
- **Deployed Leveloggers** 0
- **GPS** locations and elevation 0
- Specific conductance (µS/cm) 0
- Slug Testing (measure K) 0
- Peat Cores 0
- GPR imagery 0

Geospatial Datasets

Downloaded Geospatial Datasets:

- DEM
- Surface Water
- Surficial and Bedrock Geology
- Soil-Water Balance
- Evapotranspiration
- Precipitation

Created Geospatial Datasets:

- GPR-derived esker locations
- Peat basin depth
- Hydraulic Head
- Hydraulic Conductivity
- Specific Conductance

Used these dataset to create groundwater models using USGS Modflow 6 with the FloPy Interface

Implication of Results

- Preliminary models shows that the underlying geology does exert a hydraulic influence within a peatland
- Suggests that ombrotrophic bogs in glaciated areas may not be completely separate from the regional aquifer
- Locating the eskers could provide ways to find geochemical hotspots (methane emissions)

Future work:

- Create and compare these results to a groundwater model of our other field sites
- Take measurements of methane and carbon dioxide and correlate to hydrology/esker locations

Questions?

victoria.niedzinski@maine.edu University of Maine School of Earth and Climate Sciences

